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Pulsed laser control of photodissociation in the strong and the weak coupling regimes is analyzed. Simple
pulse shaping conditions are derived and are given explicitly in the weak coupling regime. Implicit equations

in the strong coupling regime are also derived. Short, shaped pulses, yielding optimal control, are shown to
work due to quantum interference among routes to the same final energy. This is contrary to the prevailing
view that the role of a short pulse is to be fast enough so as to “beat the process of intramolecular vibrational
redistribution (IVR)".

I. Introduction It is the purpose of this paper to show that the energy resolved
. ) ) perspective both corrects this perception and adds considerably
~ Coherent control constitutes a method in which quantum t our understanding of pulse-shaped control. Specifically, we
interference effects are useql to control molecular procésses. ghow that even for strong laser fields, the shape of the exciting
There are, at present, two distinct paradigms for the coherent|aser pulse, and hence certainly the time scale of the subsequent
control of chemical reactions. One, due to Brumer and Shapiro, ojecular evolution, is irrelevant to the control over uni-
approaches control in energy space. This is done by expandingmgjecular processes in the case whesingle bound state is
the molecular states in terms of the eigenstates of the mOIeCUIarphotodissociated. Second, we explicitly consider pulsed laser
Hamiltonian. Control is shown to be attainable by populating aycitation whermanybound states are coupled to a continuum,
each continuum state using multiple interfering pathways. ang show that in this case control is possible. We also derive
Ideally, this interference is made to be destructive for all states ¢ pulse shaping conditions that allow for control in this case

but one, the (“target” or “objective”) state of interest. and show the origin of control in quantum interference.
The alternative paradigm, originally due to Tannor and Rice
and central to the optimal control approdchttempts to achieve  [I. Multichannel Dissociation/lonization of a Single

the same goal by considering the explicit time dependence of Precursor State
states that evolve to a desired target. Although not as manifestly
evident, this approach also relies upon the existence of multiple
interfering pathways to bring about control.

Both of these paradigms bring their own correct insights to
coherent control. In addition, they each motivate appropriate

experiments in di_fferen_t technological domai_ns. Thus,_the this is not the case. In particular, we show that, contrary to
energy-resolved viewpoint has been used mainly to motivate .4,1on wisdom, as long as only a single bound state is

ns pulsgd laser experlm.ents, Whereas thg tlrne'dependenEffectively involved, the situation is uncontrollable, irrespective
perspective was used mainly to devise and interpret ultrafast j¢ o pulse shape used

experimenté. _ ) Consider the action of a pulse of light, described by a classical
Consider now control of the dynamics of isolated systems time-evolving electric field of polarizatio®,

(e.g., photodissociation processes). Adopting the time-dependent
approach to this case has a conceptual drawback that has led to
some misunderstanding. Specifically, despite efforts to counter
this incorrect viewpoing, there is still talk about the need for
faster laser pulses, or more complex laser pulse shapes, to “bea®n an initially bound molecular system. Given the total
out the effects of intramolecular vibrational redistribution radiation-matter Hamiltonian in the “electric-dipole” ap-
(IVR)". That is, there remains the incorrect perception that Proximation,

control over chemical reactions in isolated molecules is achieved

by creating molecular states whose controlled time scale of Hi=H — z-€(t) 2
evolution is faster than IVR ratés.

Consider first the case of a single bound state excited to
dissociation using a pulsed laser. Naive thinking would suggest
that shaping the pulse, either to enhance particular frequencies
or to shorten the pulse in time, might prove useful in order to
increase the yield of a desired product state. Here we show that

€ = 2eR{e(t)e"} (1)

where H is the molecular Hamiltonian and is the dipole
T Part of the special issue “William H. Miller Festschrift”. operator, the outcome of the action of the pulse is obtained by
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solving the time-dependent Sckiinger equation,

ih%PPD: Hy /WO 3)

The bound and continuum eigenstates of the molecular

HamiltonianH satisfy the time-independent S¢dimger equa-
tion,
[E — HIIEC=[E — H]IE,n =0 (4)

where |Ei denote the bound eigenstates ajif n—O the
continuum eigenstates, labeled by the indineand E, with n

comprising a set of quantum numbers that specify the final (

— o) internal (vibrational, rotational, etc.) states of the

dissociated polyatomic fragments as well as the product

arrangement. These indices label the eigenst@en; OCof
the separated fragments Hamiltoni&ty, = H — V. That is,

[E — HIE, n; 0= 0 (5)

Shapiro and Brumer
the detuning, is defined as

Agi=wg — o Withwg, =(E-E)h,i=1,..,  (12)

and Qi gn(t), the (time-varying) Rabi-frequency, is defined as

Q1,E,n(t) =

where u is the projection of the dipole operator along the
polarization vector of the field.

We procee#f by integrating theb(El}] continuum coefficients
of eq 11 over time, while imposing the boundary condition that
only the|ECstate is initially populated, i.e., thaf)(t — —)
= 0. With this boundary condition, we have that

[, |u|E, n"&(t)/h (13)

b =i [1, drQie by (14)
Of interest is the state-specific probabilify,(E), which is

the long-time probability, at fixed enerdy, of observing a

particular internal stat¢nCof the dissociated fragments. It is

HereVis the interaction between the fragments, which naturally gjven using eq 14 as

decays asR, the distance between the fragments, becomes

sufficiently large,

lim V(R) = (6)
We denote the “incoming” eigenstatestbby |E, n~Ll These
states satisfy the incoming Lippmann Schwinger equation,
|E, n = |E, n; OCH Iéim)[E —i&—H 'VIE,n 0 (7)
which guarantedghat the incoming states correlate in the-
oo limit with a single|E, n; OCkigenstate oHo. That is, we say
that

lim|E, n & & = |E, n; or@ "E™

t—o0

)

meaning more precisely that an arbitrarily narrow wave packet

of scattering statefE, n~Ccorrelates with an equally narrow
wave packet of product statéfs, n; OClin the long time limit:

lim lim [, ce|E, n"& """ dE = [, cg|E, n; 0le"=" dE

)

The above radiation-free basis set enables us to explicitly p (E) =

include thet — o limit in the full time dependent wave function.
Considering now the case where onlgiaglebound stateE;[]
is coupled to the continuum, we can expghé(t)Jad 11

|W(t)= by (t)|E & + z J dEB(t)IE, nTre =
(10)

Substituting this expansion into the time-dependent ‘Sthger

IbEN(t — o0)* =

Po(E) = Py(E, t— o) =

' |A t 2
(R JIE, 00 dter(t)by()e = (15)
It follows from egs 14 and 15 that the long-time ratio of
probabilities (which is the key quantity to control in chemical
reactions) to observe two internal fragment states is given by

a (16)

We see that the relative probabilities of populating different
asymptotic states at a fixed enerByare independent of the
laser pulse attributes (save for the polarization direction).
Moreover, the branching ratio does not change during the pulse.
This result, which coincides with that of perturbation theory,
holds true irrespective of the laser power, provided that only
one bound statéE;is coupled to the continuum.

The above result holds true even when the rotating waves
approximation, adopted above, breaks down, because even in
this case the probability can be written as

P,(E)
Pn(E)

Pi(E.T)
P.E 1)

(E, |u|E,
|:E1|,“|E m

bE)(®) ‘2
bE (1)

|bEN(t — o0)* =

[Ey|ulE, nOf dt{ex(t)e= + et)e = by () ?
17)

%

and the pulse attributes still cancel out when FR¢EE)/Pr(E)
branching ratio is evaluated.

We conclude that pulse shaping does not provide a means of
controlling the ratio of products formed in the excitation of a

equation and using the orthogonality of the basis functions yields single bound state. Hence, the common phrase that it is
a set of first-order differential equations for the expansion advantageous to shorten the laser pulse “in order to beat IVR”

coefficients,

b =i [(dEY Qe (bE® e (11a)

bg;— Q¢ (De*="by(t), for eachE andn  (11b)

where we have retained only the rotating waves terfis,

is totally misleading: the fate of the system merely follows the
nature of the radiation-frefe, n—[Omolecular eigenstates.

[ll. Quantum Interference Control

The lack of pulse-shaping control demonstrated above can
be overcome by photodissociating not just ¢Bg bound state,
but a superposition of several bound statéfl] Such a
superposition state can be created separately by a preparation
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pulse. This is in essence the pusgiump control scenari!3
Alternatively, the superposition state can be created by the
photolysis pulse itself (by, e.g., a stimulated Raman process),
provided that the bandwidth of the pulse is comparable to the
energy spacings between ttiglevels.

Mathematically speaking, the object of control is the prepara-
tion of a single |E, n~Ostate. If this is achieved, we are
guaranteed, by eq 8, complete control insofar as only one
fragment target statd, n; Olis populated ag— co. With this
in mind, we rewrite eq 10 in matrix notation as

IE, nf&

|E,n, O
J dEe™ ™ (o), (1), b, (©), bE) (1) ...} B e B

(WO () 0=

(18)

where [P)(t)0is the excited portion of the wave packet that
originated from statéE;[] namely,

WOt O= (WO by E 6= (19)

To achieve the control target we consider preparing a whole
array of wave packets, by, for example, starting with other initial
states composed of the system bound stgEgs That is,

W(t) = [ dEe " “"b(E)y(E) (20)

where

W)
w0
L ARG

O = (21)

b(l)

En,

b(l)

Eng

1
g
b(2) ’b(2) b(3)

Eng? YEny MEnNg? (T

b(3) b(3) b(3)

b(E) Eny BEn, BEny - (22)

and

£

|E, n, O

pE) =|Ens O (23)

It is easy to see that the(E) matrix factorizes as

b(E) = E(E)-M(E) (24
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where

[E,|u|E, n, QEulE n, ...
[EolulE, ny LI ulE n, ...

[

(25)

and WhereE(E) is a diagonal matrix of the Fourier transform
of the pulse amplitude times the bound states coefficients, at
the transition frequenciesg;,

E,(E),0,0,0, ..
0,E,(E), 0,0, ...
€ - 0, 0,E4(E), O, ... 26)
with
E(E) = [ dte*(t)e"=" b(t) (27)

Writing the array of possible wave function produced as,

() = [ dEe ™" E(E)-M(E)-y(E) (28)
allows us to examine the possibility of taking different linear
combinations of the components of tNét) vector so as to
satisfy the control objectives of producing a singten; Cstate.
In this way different pathways starting with different precursor
states leading to the sarte n;"[state will be seen to interfere
to achieve the desired goal.

As an example, we consider a superposition state composed
of the sum over the components 9(t),

Pr(t) = Z J dEe " E(E) Z M(E)|E, n; O (29)

In the weak field limit, the population and the phase of the initial
levels can be assumed constant with time,

by(t) ~ by = by(—e0) (30)
in which case all théeg(E) matrix elements factor as
E(E) ~ b, [ die (e’ = 2abg(Ag)  (31)
where
&(w) = (12r) 7 dtex(t)e”" (32)

Our objective to populate exclusively tligh fragment state
|E, ni_Ocan be realized in the weak field domain by choosing
the pulse shape which defindB'(t) [eq 29] to satisfy the
condition,

biE(Aey) = (M(E) )y (33)
This choice eliminates all but a sing|E, n;~Ostate inW'(t)
given by eq 29.

Thus, the control objective, thigh product state, is seen to

be realized by starting out with an initial superposition of bound
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states, In first-order perturbation theoryy(t) and by(t) are constant.
Hence in the weak field regime,
ot = § b E @& B (34) .
I B 27i -
be (t — ) ~ ?{ [E, N |ulE,E(Ag )b, +

and subjecting the system to the action of a pulse shaped E n [ulEE(Ag )by} (38)
according to eq 33. This allows for multiple-path interference
between the various ways of generating fen;Cstate. The ~ Whereé(w) is defined in eq 32. Recognizing th&fw) has a
weight of each pathway is chosen so as to cause destructivePhase, we can write
interference in the production of all thg, n~Ostates but one, ~ i6Aey - ~ _i6Ae )
the |E, nj-Cstate. €(Agy) = [€(Ag)le T, E(Agp) = [€(Ag)le TP (39)
Thus, pulse shaping leads to control only insofar as it allows ]
for interference between different coherently related bound states@nd transform eq 38 into
comprising®, or more generally, between different pathways o _
leading to the same product. Hence, the effect of a short pulsebg () = ?{ (E, n’|p¢|Elﬂk‘(AEvl)|ef'(’(AEvl)bl +
is not to “beat IVR”, but rather, due to its increased bandwidth, )
to allow processes originating in more bound states to interfere [E, n‘lulEZDE(AE,Z)Ie‘”’(AEde} (40)
with each other in forming the samg, n;"Ostate.
In general, control is incomplete because the pulse shaping The probability of observing the product statat infinite time
conditions of eq 33 cannot be satisfied simultaneously for all is therefore now given as
energies. This can be seen by noting that #éH)~1) matrix )
element, which (for a singlg is a function of two variables P.(E) = %IEE, N u|EyTe(Ag )le "C=db,+
andE, has to be equated to a product of a functiok,ddy, and h '

a function of E, &(Agx). In general, this equality cannot be (E, n_|p¢|E2|Z|J€(AE2)|e_i9(AEv2)b2| (41)
satisfied. There are nevertheless important cases in which eq ’

33 can be satisfied. These are: either wiM{E) does not |t is clear that in this configuration the pulse attributes have
vary too rapidly withE, or, conversely, When_thEﬂmE, n—0 been “entangled” with the material matrix elements. As a result,

matrix elements, which determird(E) (and the absorption by shaping the pulse (e.g., by tuning the relative pté{ae: )

spectrum), span a very narrow range of energies (e.g., a narrow_ ?(Ae1) or the relative amplitudée(Ae 2)/é(Ae,1)l), we can
resonance). change the branching ratios to different channels. The above

The weak field control discussed here must be achieved in mechanism serves as the basis for the so-called bichromatic

PR o herent control scenarfo.
two steps. First it is necessary to create @) superposition cone ) . , .
state of eq 34. This state is then irradiated with the pulse . It is possible to deviate from the weak f_|eld regime and
satisfying eq 33. This is the essence of the weak field pamp incorporate some of the effects of strong fields in a simple
dump scenario. However, in the strong field domain these two ma{]hnetr by assf;Jr_mng tha_tblstatéatis (ilecouplid_g‘lrorp St?ﬂEZtD
processes cannot be separated because the factorization of elcﬁ1 at case it is possible to solve explicitly for te()

31 does not hold. In that case the control conditions become coeffigient by §ubstitqting eq .14 in eq 11a to obtain a first-
order integro-differential equation fdm,

Ei(E) = (M(E) 1)i,k (35) do, —1 _
= E=—2dez I, 0™ |ul Ey e (t)
In this strong field regime thig(t) coefficients are embedded K " . _ ,
in E4(E) (see eq 27) and are themselves functiong®f Hence SO dtex(t)e el Op (1) (42)
the problem is inherently nonlinear, necessitating an iterative
solution. Nevertheless, the same interference mechanism out- Equation 42 can be solved numerically in a straightforward
lined in the weak field domain applies. The only difference is fashion. Nevertheless, it is instructive to analyze it in terms of
that the pulse-shaping conditions are given implicitly via eq F(t — t'), the “spectral autocorrelation functiot?41114efined
35, rather than explicitly via eq 33, as in the weak field domain. as the Fourier transform of the absorption spectrum,

IV. Bichromatic Control Ft—t)= fo“’ dEAl(E)e_“”Evli(t_t') (43)

As an example of the general procedure described above we
now examine the simple caseichromatic contrétachieved whereE = 0 is taken to be the lowest (threshold) energy in the
by considering a two-dimension8!(t) vector. Constructing a  continuum, and\(E), the absorption spectrum from thh state,

linear superposition of just two initial states is given as
|D(t)C= by |E,[@ BV + b |E (& Eh (36) AB) = Y IE n uly 0P (44)
n
we have that With the above definition oF(t — t'), we can rewrite eq 42 as
i - © iAg gt dbl _G(t) t I k(41 ’ r
beo(t— ) = 1 {(E, n|ulE,0f ", drex(t)e=by(t) + &= e S AR B (45)

- © r "\ Al AE r
[, n |/‘|E2Df7m dte(t)e = by(t)} (37) We see that the value of the ground-state coefficient at time
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is determined by its past history &t< t through the “memory observing a particular channelis given as
kernel” e(t)e(t')Fa(t — t').
The simplest (though approximate) solution of eq 45 is 42 B - i0Ae
obtained if one can assume that all the continua are “flat’, i.e., Po(E) = —I[E, n" |u|E,n(Ag )le ™ =b, +
that the bound continuum matrix elements vary slowly with h )
energy and can be replaced by their value at some average (E, n7|/,¢|EzEﬂﬁ(AEQ)|e7'0(AEv2)b2 (52)
energy, sayE, = E; + hw,
where
YIE N WEF~ Y [E.n wET  (46)
" " M(0) = (U21) [ dtex(t)e MAEL IO gt (53)
If in addition one assumes th8E = 0, n~|u|E;0~ O (i.e., the
photoabsorption spectrum starts at post-threshold energies), therhis formulation therefore gives a result that is correct (within
above approximation, called the “slowly varying continuum the range of validity of the SVCA) to all field strengths and

approximation” (SVCA)>1%1" localizes the autocorrelation  that resembles the weak field bichromatic control result (eq 41).
function in time. To see this, we note that under the SVCA The only difference is that instead of the Fourier transform

assumptions it follows from eq 43 that of the pulse electric field, eq 52 depends on the Fourier
transform of the product of the pulse electric field and the
Ft—t)~ f_ wm dEA,(E)e e ~ e "hAED/ 1< decaying factor, describing the depletion of
" ) , the initial state(s) due to the action of the pulse.
A(E) f_ " dEe e = 27hA (B )O(t — t) (47) Given this result, the optimal control pulse shaping conditions

(eq 33) now become
Substituting eq 47 in eq 45 and performing the integration over

E andt', we obtain that b (Ae) = (M(E) ™Y (54)
db, _ i .
—=—Q(t)b,(t) (48) This result resembles the weak field condition of eq 33, but
dt due to the replacement 8{Agx) by 7i(Agy), it applies (within
the range of validity of the SVCA) to strong fields as well.
hence,
. V. Summary
- [ e ) .
b,(t) = by(—)e L. (49) We have elucidated the nature of pulsed-shaping control of
photodissociation from the viewpoint of energy resolved coher-
where Q(t)—the “imaginary Rabi frequency®is defined as ent control theory. The result is a clear-cut demonstration that

control is not dependent on time dependent aspects of the pulse
Q(t) = 7A(E) ()| h =7 z|[EL’ N |u|E,é(0)7h  (50) in cases where excitation is from a single initial bound state.
m When excitation is from a superposition of states, the pulse
shaping is seen to enhance or reduce the role of multiple
The factor of 1/2 relative to eq 47 arises because the integrationinterfering pathways that are responsible for control. This
overt' — tin eq 45 is performed over the-po, 0] range rather  discussion should, therefore, lay to rest any attempt to attribute
than the usualfo, +o] range. control to effective competition with internal relaxation pro-
It follows from eq 49 that a “slowly varying” continuum acts  cesses in the molecule which, by their very nature, are coherent
as an irreversible “perfect absorber”, since in this approximation and phase preserving.
b;(t) decreases monotonically (though not necessarily purely
exponentially) with time. In many cases the continuum may  Acknowledgment. We are pleased to submit this paper in
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