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Pulsed laser control of photodissociation in the strong and the weak coupling regimes is analyzed. Simple
pulse shaping conditions are derived and are given explicitly in the weak coupling regime. Implicit equations
in the strong coupling regime are also derived. Short, shaped pulses, yielding optimal control, are shown to
work due to quantum interference among routes to the same final energy. This is contrary to the prevailing
view that the role of a short pulse is to be fast enough so as to “beat the process of intramolecular vibrational
redistribution (IVR)”.

I. Introduction

Coherent control constitutes a method in which quantum
interference effects are used to control molecular processes.1

There are, at present, two distinct paradigms for the coherent
control of chemical reactions. One, due to Brumer and Shapiro,2

approaches control in energy space. This is done by expanding
the molecular states in terms of the eigenstates of the molecular
Hamiltonian. Control is shown to be attainable by populating
each continuum state using multiple interfering pathways.
Ideally, this interference is made to be destructive for all states
but one, the (“target” or “objective”) state of interest.

The alternative paradigm, originally due to Tannor and Rice3

and central to the optimal control approach,4 attempts to achieve
the same goal by considering the explicit time dependence of
states that evolve to a desired target. Although not as manifestly
evident, this approach also relies upon the existence of multiple
interfering pathways to bring about control.

Both of these paradigms bring their own correct insights to
coherent control. In addition, they each motivate appropriate
experiments in different technological domains. Thus, the
energy-resolved viewpoint has been used mainly to motivate
ns pulsed laser experiments, whereas the time-dependent
perspective was used mainly to devise and interpret ultrafast
experiments.5

Consider now control of the dynamics of isolated systems
(e.g., photodissociation processes). Adopting the time-dependent
approach to this case has a conceptual drawback that has led to
some misunderstanding. Specifically, despite efforts to counter
this incorrect viewpoint,6 there is still talk about the need for
faster laser pulses, or more complex laser pulse shapes, to “beat
out the effects of intramolecular vibrational redistribution
(IVR)”. That is, there remains the incorrect perception that
control over chemical reactions in isolated molecules is achieved
by creating molecular states whose controlled time scale of
evolution is faster than IVR rates.7

It is the purpose of this paper to show that the energy resolved
perspective both corrects this perception and adds considerably
to our understanding of pulse-shaped control. Specifically, we
show that even for strong laser fields, the shape of the exciting
laser pulse, and hence certainly the time scale of the subsequent
molecular evolution, is irrelevant to the control over uni-
molecular processes in the case where asinglebound state is
photodissociated. Second, we explicitly consider pulsed laser
excitation whenmanybound states are coupled to a continuum,
and show that in this case control is possible. We also derive
the pulse shaping conditions that allow for control in this case
and show the origin of control in quantum interference.

II. Multichannel Dissociation/Ionization of a Single
Precursor State

Consider first the case of a single bound state excited to
dissociation using a pulsed laser. Naive thinking would suggest
that shaping the pulse, either to enhance particular frequencies
or to shorten the pulse in time, might prove useful in order to
increase the yield of a desired product state. Here we show that
this is not the case. In particular, we show that, contrary to
common wisdom, as long as only a single bound state is
effectively involved, the situation is uncontrollable, irrespective
of the pulse shape used.

Consider the action of a pulse of light, described by a classical
time-evolving electric field of polarizationÊ,

on an initially bound molecular system. Given the total
radiation-matter Hamiltonian in the “electric-dipole” ap-
proximation,

where H is the molecular Hamiltonian andµb is the dipole
operator, the outcome of the action of the pulse is obtained by† Part of the special issue “William H. Miller Festschrift”.

εb ) 2ÊRe{ε(t)eiwLt} (1)

Htot ) H - µb‚εb(t) (2)
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solving the time-dependent Schro¨dinger equation,

The bound and continuum eigenstates of the molecular
HamiltonianH satisfy the time-independent Schro¨dinger equa-
tion,

where |Ei〉 denote the bound eigenstates and|E, n-〉 the
continuum eigenstates, labeled by the indicesn andE, with n
comprising a set of quantum numbers that specify the final (t
f ∞) internal (vibrational, rotational, etc.) states of the
dissociated polyatomic fragments as well as the product
arrangement. These indices label the eigenstates|E, n; 0〉 of
the separated fragments Hamiltonian,H0 ) H - V. That is,

HereV is the interaction between the fragments, which naturally
decays asR, the distance between the fragments, becomes
sufficiently large,

We denote the “incoming” eigenstates ofH by |E, n-〉. These
states satisfy the incoming Lippmann Schwinger equation,

which guarantees8 that the incoming states correlate in thet f
∞ limit with a single|E, n; 0〉 eigenstate ofH0. That is, we say
that

meaning more precisely that an arbitrarily narrow wave packet
of scattering states|E, n-〉 correlates with an equally narrow
wave packet of product states|E, n; 0〉 in the long time limit:

The above radiation-free basis set enables us to explicitly
include thet f ∞ limit in the full time dependent wave function.
Considering now the case where only asinglebound state|E1〉
is coupled to the continuum, we can expand|Ψ(t)〉 as9-11

Substituting this expansion into the time-dependent Schro¨dinger
equation and using the orthogonality of the basis functions yields
a set of first-order differential equations for the expansion
coefficients,

where we have retained only the rotating waves terms.∆E,i,

the detuning, is defined as

andΩ1,E,n(t), the (time-varying) Rabi-frequency, is defined as

where µ is the projection of the dipole operator along the
polarization vector of the field.

We proceed12 by integrating thebE,n
(1) continuum coefficients

of eq 11 over time, while imposing the boundary condition that
only the|E1〉 state is initially populated, i.e., thatbE,n

(1) (t f -∞)
) 0. With this boundary condition, we have that

Of interest is the state-specific probability,Pn(E), which is
the long-time probability, at fixed energyE, of observing a
particular internal state|n〉 of the dissociated fragments. It is
given using eq 14 as

It follows from eqs 14 and 15 that the long-time ratio of
probabilities (which is the key quantity to control in chemical
reactions) to observe two internal fragment states is given by

We see that the relative probabilities of populating different
asymptotic states at a fixed energyE are independent of the
laser pulse attributes (save for the polarization direction).
Moreover, the branching ratio does not change during the pulse.
This result, which coincides with that of perturbation theory,
holds true irrespective of the laser power, provided that only
one bound state|E1〉 is coupled to the continuum.

The above result holds true even when the rotating waves
approximation, adopted above, breaks down, because even in
this case the probability can be written as

and the pulse attributes still cancel out when thePn(E)/Pm(E)
branching ratio is evaluated.

We conclude that pulse shaping does not provide a means of
controlling the ratio of products formed in the excitation of a
single bound state. Hence, the common phrase that it is
advantageous to shorten the laser pulse “in order to beat IVR”
is totally misleading: the fate of the system merely follows the
nature of the radiation-free|E, n-〉 molecular eigenstates.

III. Quantum Interference Control

The lack of pulse-shaping control demonstrated above can
be overcome by photodissociating not just one|E1〉 bound state,
but a superposition of several bound states|Ei〉. Such a
superposition state can be created separately by a preparation

ip
∂

∂t
|Ψ〉 ) Htot|Ψ〉 (3)

[Ei - H]|Ei〉 ) [E - H]|E, n-〉 ) 0 (4)

[E - H0]|E, n; 0〉 ) 0 (5)

lim
Rf∞

V(R) ) 0 (6)

|E, n-〉 ) |E, n; 0〉 + lim
úf0

[E - iú - H0]
-1V|E, n-〉 (7)

lim
tf∞

|E, n-〉e-iEt/p ) |E, n; 0〉e-iEt/p (8)

lim
∆f0

lim
tf∞

∫∆
cE|E, n-〉e-iEt/p dE ) ∫∆

cE|E, n; 0〉e-iEt/p dE

(9)

|Ψ(t)〉 ) b1(t)|E1〉e
-iE1t/p + ∑

n
∫ dEbE,n

(1) (t)|E, n-〉e-iEt/p

(10)

d
dt

b1 ) i ∫ dE∑nΩ1,E,n(t)bE,n
(1) (t) e-i∆E,1t (11a)

d
dt

bE,n
(1) ) Ω1,E,n

/ (t)ei∆E,1tb1(t), for eachE andn (11b)

∆E,i ≡ ωE,i - ωL with ωE,i ≡ (E - Ei)/p, i ) 1, ..., (12)

Ω1,E,n(t) ≡ 〈E1|µ|E, n-〉ε(t)/p (13)

bE,n
(1) (t) ) i ∫-∞

t
dt′Ω1,E,n

/ (t′)b1(t′)e
i∆E,1t (14)

Pn(E) ) Pn(E, t f ∞) ) |bE,n
(1) (t f ∞)|2 )

|1
p

〈E1|µ|E, n-〉 ∫-∞

∞
dt′ε*( t′)b1(t′)e

i∆E,1t′|2 (15)

Pn(E)

Pm(E)
)

Pn(E, t)

Pm(E, t)
) |bE,n

(1) (t)

bE,m
(1) (t)

|2

) | 〈E1|µ|E, n-〉

〈E1|µ|E, m-〉|
2

(16)

Pn(E) ) |bE,n
(1) (t f ∞)|2 )

|1
p

〈E1|µ|E, n-〉 ∫-∞

∞
dt′{ε*( t′)ei∆E,1t′ + ε(t′)ei(ωE,1+ωL)t′}b1(t′)|2

(17)
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pulse. This is in essence the pump-dump control scenario.3,13

Alternatively, the superposition state can be created by the
photolysis pulse itself (by, e.g., a stimulated Raman process),
provided that the bandwidth of the pulse is comparable to the
energy spacings between the|Ei〉 levels.

Mathematically speaking, the object of control is the prepara-
tion of a single |E, n-〉 state. If this is achieved, we are
guaranteed, by eq 8, complete control insofar as only one
fragment target state|E, n; 0〉 is populated ast f ∞. With this
in mind, we rewrite eq 10 in matrix notation as

where|Ψ(1)(t)〉 is the excited portion of the wave packet that
originated from state|E1〉, namely,

To achieve the control target we consider preparing a whole
array of wave packets, by, for example, starting with other initial
states composed of the system bound states|Ei〉. That is,

where

and

It is easy to see that theb(E) matrix factorizes as

where

and whereÊ(E) is a diagonal matrix of the Fourier transform
of the pulse amplitude times the bound states coefficients, at
the transition frequenciesωE,i,

with

Writing the array of possible wave function produced as,

allows us to examine the possibility of taking different linear
combinations of the components of theΨ(t) vector so as to
satisfy the control objectives of producing a single|E, ni

-〉 state.
In this way different pathways starting with different precursor
states leading to the same|E, ni

-〉 state will be seen to interfere
to achieve the desired goal.

As an example, we consider a superposition state composed
of the sum over the components ofψ(t),

In the weak field limit, the population and the phase of the initial
levels can be assumed constant with time,

in which case all theEk(E) matrix elements factor as

where

Our objective to populate exclusively theith fragment state
|E, ni

-〉 can be realized in the weak field domain by choosing
the pulse shape which definesΨ′(t) [eq 29] to satisfy the
condition,

This choice eliminates all but a single|E, ni
-〉 state inΨ′(t)

given by eq 29.
Thus, the control objective, theith product state, is seen to

be realized by starting out with an initial superposition of bound

M(E) ) (〈E1|µ|E, n1
-〉, 〈E1|µ|E, n2

-〉, ...

〈E2|µ|E, n1
-〉, 〈E2|µ|E, n2

-〉, ...
.
.
.

) (25)

Ê(E) ) (E1(E), 0, 0, 0, ...
0, E2(E), 0, 0, ...
0, 0,E3(E), 0, ...

.

.

.
) (26)

Ei(E) ) ∫-∞

∞
dtε*( t)ei∆E,it bi(t) (27)

Ψ(t) ) ∫ dEe-iEt/p Ê(E)‚M(E)‚ψ(E) (28)

Ψ′(t) ) ∑
k
∫ dEe-iEt/p Ek(E) ∑

j
M(E)k,j|E, nj

-〉 (29)

bk(t) ≈ bk ≡ bk(-∞) (30)

Ek(E) ≈ bk ∫-∞

∞
dtε*( t)ei∆E,kt ) 2πbkεj(∆E,k) (31)

εj(ω) ≡ (1/2π) ∫-∞

∞
dtε*( t)eiωt (32)

bkεji(∆E,k) ) (M(E)-1)i,k (33)

|Ψ(1)(t)〉 )

∫ dEe-iEt/p (bE,n1

(1) (t), bE,n2

(1) (t), bE,n3

(1) (t) ,...,)(|E, n1
-〉

|E, n2
-〉

|E, n3
-〉

.

.

.

) (18)

|Ψ(1)(t)〉 ≡ |Ψ(t)〉 - b1|E1〉e
-iE1t/p (19)

Ψ(t) ) ∫ dEe-iEt/pb(E)‚ψ(E) (20)

ψ(t) ≡ (|Ψ(1)(t)〉
|Ψ(2)(t)〉
|Ψ(3)(t)〉

.

.

.

) (21)

b(E) ≡ (bE,n1

(1) , bE,n2

(1) , bE,n3

(1) , ...

bE,n1

(2) , bE,n2

(2) , bE,n3

(3) , ...

bE,n1

(3) , bE,n2

(3) , bE,n3

(3) , ...

.

.

.

) (22)

ψ(E) ≡ (|E, n1
-〉

|E, n2
-〉

|E, n3
-〉

.

.

.

) (23)

b(E) ) Ê(E)‚M(E) (24)
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states,

and subjecting the system to the action of a pulse shaped
according to eq 33. This allows for multiple-path interference
between the various ways of generating the|E, ni

-〉 state. The
weight of each pathway is chosen so as to cause destructive
interference in the production of all the|E, n-〉 states but one,
the |E, ni

-〉 state.
Thus, pulse shaping leads to control only insofar as it allows

for interference between different coherently related bound states
comprisingΦ, or more generally, between different pathways
leading to the same product. Hence, the effect of a short pulse
is not to “beat IVR”, but rather, due to its increased bandwidth,
to allow processes originating in more bound states to interfere
with each other in forming the same|E, ni

-〉 state.
In general, control is incomplete because the pulse shaping

conditions of eq 33 cannot be satisfied simultaneously for all
energies. This can be seen by noting that the (M(E)-1) matrix

element, which (for a singlei) is a function of two variables,k
andE, has to be equated to a product of a function ofk, bk, and
a function of E, εji(∆E,k). In general, this equality cannot be
satisfied. There are nevertheless important cases in which eq
33 can be satisfied. These are: either whenM(E) does not

vary too rapidly withE, or, conversely, when the〈E1|µ|E, n-〉
matrix elements, which determineM(E) (and the absorption

spectrum), span a very narrow range of energies (e.g., a narrow
resonance).

The weak field control discussed here must be achieved in
two steps. First it is necessary to create theΦ(t) superposition
state of eq 34. This state is then irradiated with the pulse
satisfying eq 33. This is the essence of the weak field pump-
dump scenario. However, in the strong field domain these two
processes cannot be separated because the factorization of eq
31 does not hold. In that case the control conditions become

In this strong field regime thebk(t) coefficients are embedded
in Ek(E) (see eq 27) and are themselves functions ofε(t). Hence
the problem is inherently nonlinear, necessitating an iterative
solution. Nevertheless, the same interference mechanism out-
lined in the weak field domain applies. The only difference is
that the pulse-shaping conditions are given implicitly via eq
35, rather than explicitly via eq 33, as in the weak field domain.

IV. Bichromatic Control

As an example of the general procedure described above we
now examine the simple casesbichromatic control2sachieved
by considering a two-dimensionalΨ(t) vector. Constructing a
linear superposition of just two initial states

we have that

In first-order perturbation theory,b1(t) andb2(t) are constant.
Hence in the weak field regime,

whereεj(ω) is defined in eq 32. Recognizing thatεj(ω) has a
phase, we can write

and transform eq 38 into

The probability of observing the product staten at infinite time
is therefore now given as

It is clear that in this configuration the pulse attributes have
been “entangled” with the material matrix elements. As a result,
by shaping the pulse (e.g., by tuning the relative phaseθ(∆E,2)
- θ(∆E,1) or the relative amplitude|εj(∆E,2)/εj(∆E,1)|), we can
change the branching ratios to different channels. The above
mechanism serves as the basis for the so-called bichromatic
coherent control scenario.2

It is possible to deviate from the weak field regime and
incorporate some of the effects of strong fields in a simple
manner by assuming that state|E1〉 is decoupled from state|E2〉.
In that case it is possible to solve explicitly for theb1(t)
coefficient by substituting eq 14 in eq 11a to obtain a first-
order integro-differential equation forb1,

Equation 42 can be solved numerically in a straightforward
fashion. Nevertheless, it is instructive to analyze it in terms of
F1(t - t′), the “spectral autocorrelation function”,12,14,11,15defined
as the Fourier transform of the absorption spectrum,

whereE ) 0 is taken to be the lowest (threshold) energy in the
continuum, andAi(E), the absorption spectrum from theith state,
is given as

With the above definition ofF1(t - t′), we can rewrite eq 42 as

We see that the value of the ground-state coefficient at timet

|Φ(t)〉 ) ∑
k

bk|Ek〉e
-iEkt/p (34)

Ei,k(E) ) (M(E)-1)i,k (35)

|Φ(t)〉 ) b1|E1〉e
-iE1t/p + b2|E2〉e

-iE2t/p (36)

bE,n(t f ∞) ) i
p

{(E, n-|µ|E1〉 ∫-∞

∞
dt′ε*( t′)ei∆E,1t′b1(t′) +

〈E, n-|µ|E2〉 ∫-∞

∞
dt′ε(t′)ei∆E,2t′b2(t′)} (37)

bE,n(t f ∞) ≈ 2πi
p

{〈E, n-|µ|E1〉εj(∆E,1)b1 +

〈E, n-|µ|E2〉εj(∆E,2)b2} (38)

εj(∆E,1) ) |εj(∆E,1)|e-iθ(∆E,1), εj(∆E,2) ) |εj(∆E,2)|e-iθ(∆E,2) (39)

bE,n(∞) ) 2πi
p

{〈E, n-|µ|E1〉|εj(∆E,1)|e-iθ(∆E,1)b1 +

〈E, n-|µ|E2〉|εj(∆E,2)|e-iθ(∆E,2)b2} (40)

Pn(E) ) 4π2

p2
|〈E, n-|µ|E1〉|εj(∆E,1)|e-iθ(∆E,1)b1+

〈E, n-|µ|E2〉|εj(∆E,2)|e-iθ(∆E,2)b2| (41)

db1

dt
)

-1

p2
∫ dE ∑

n

|〈E, n-|µ|E1〉|2ε(t)

∫-∞

t
dt′ε*( t′)e-i∆E,1(t-t′)b1(t′) (42)

F1(t - t′) ) ∫0

∞
dEA1(E)e-iωE,1i(t-t′) (43)

Ai(E) ≡ ∑
n

|〈E, n-|µ|ψi〉|2 (44)

db1

dt
)

-ε(t)

p2 ∫-∞

t
dt′ε*(t ′)F1(t - t′)b1(t′) (45)
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is determined by its past history att′ < t through the “memory
kernel” ε(t)ε(t′)F1(t - t′).

The simplest (though approximate) solution of eq 45 is
obtained if one can assume that all the continua are “flat”, i.e.,
that the bound continuum matrix elements vary slowly with
energy and can be replaced by their value at some average
energy, sayEL ) E1 + pωL

If in addition one assumes that〈E ) 0, n-|µ|E1〉 ≈ 0 (i.e., the
photoabsorption spectrum starts at post-threshold energies), the
above approximation, called the “slowly varying continuum
approximation” (SVCA),12,16,17 localizes the autocorrelation
function in time. To see this, we note that under the SVCA
assumptions it follows from eq 43 that

Substituting eq 47 in eq 45 and performing the integration over
E and t′, we obtain that

hence,

whereΩ(t)sthe “imaginary Rabi frequency”sis defined as

The factor of 1/2 relative to eq 47 arises because the integration
over t′ - t in eq 45 is performed over the [-∞, 0] range rather
than the usual [-∞, +∞] range.

It follows from eq 49 that a “slowly varying” continuum acts
as an irreversible “perfect absorber”, since in this approximation
b1(t) decreases monotonically (though not necessarily purely
exponentially) with time. In many cases the continuum may
have structures that are narrower than the effective bandwidth
of the pulse (which depends on its frequency profile and its
intensity). Such structures may be due to either the natural
spectrum of the nonradiative Hamiltonian18,19or to the interac-
tion with the strong external field.20,21Under such circumstances
we expect the SVCA approximation to break down, yielding
nonmonotonic decay dynamics.

Using the SVCA we can now write an analytic formula for
bichromatic control that goes beyond perturbation theory.
Allowing the initial coefficients to decay according to eq 49,
we obtain from eq 37 that

where bi ≡ bi(-∞), i ) 1, 2. Therefore, the probability of

observing a particular channeln is given as

where

This formulation therefore gives a result that is correct (within
the range of validity of the SVCA) to all field strengths and
that resembles the weak field bichromatic control result (eq 41).
The only difference is that instead of the Fourier transform
of the pulse electric field, eq 52 depends on the Fourier
transform of the product of the pulse electric field and the
e-π/pA1(EL)∫-∞

t′|ε(t′)|2dt′ decaying factor, describing the depletion of
the initial state(s) due to the action of the pulse.

Given this result, the optimal control pulse shaping conditions
(eq 33) now become

This result resembles the weak field condition of eq 33, but
due to the replacement ofεji(∆E,k) by ηj i(∆E,k), it applies (within
the range of validity of the SVCA) to strong fields as well.

V. Summary

We have elucidated the nature of pulsed-shaping control of
photodissociation from the viewpoint of energy resolved coher-
ent control theory. The result is a clear-cut demonstration that
control is not dependent on time dependent aspects of the pulse
in cases where excitation is from a single initial bound state.
When excitation is from a superposition of states, the pulse
shaping is seen to enhance or reduce the role of multiple
interfering pathways that are responsible for control. This
discussion should, therefore, lay to rest any attempt to attribute
control to effective competition with internal relaxation pro-
cesses in the molecule which, by their very nature, are coherent
and phase preserving.
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∞
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t |ε(t′)|2dt′ eiωt (53)
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